Graph-Constrained Group Testing

Mahdi Cheraghchi et al.

presented by Ying Xuan

May 20, 2010

Table of contents

(1) Motivation and Problem Definitions
(2) Constraints on the Underlying Graph
(3) Random Walk based Group Testing Solutions

- Different Random Walks
- Correctness Proof
- Notations
- Lemmas
(4) Possible Usages and Relaxations

Applications call for connected pools

- detection of congested links in IP networks or all-optical networks using probes.
- detection of dead nodes or links in sensor networks using testing packets.
- detection of infected individuals using human agents.
All need the testing pools to be walks by the probe/packet/agent.

Four Problem Variations for detecting defected vertices

Given a Undirected non-weighted
graph $G=(V, E)$ with $|V|=n$ and at most $d \ll n$ defected vertices; find the d-disjunct matrix standing for the testing pools.

- (Fixed Testing Entrances) all the probes starting from r designated vertices (entry), no constraint on the exit;
- (Fixed Testing Exit) all the probes stops at a designated sink node (exit), no constraint on the entrance;
- Fixed Testing Entrances and Exit;
- No constraints on Entrances and Exit

Similar for detecting detected edges.

Necessary Constraints on the underlying graph

(D, c)-uniform
$D \leq \operatorname{deg}(v) \leq c D$ for special parameters $D, c>1$ and $\forall v \in V$.
$\left(\frac{1}{2} c n\right)^{2}$-mixing time
The smallest integer $T(n)=t$ such that a random walk of length t starting at $\forall v \in V$ ends up having a distribution μ^{\prime} with

$$
\left\|\mu^{\prime}-\mu\right\|_{\infty}=\max _{i \in \Omega}\left\|\mu(i)-\mu^{\prime}(i)\right\|<\left(\frac{1}{2} c n\right)^{2}
$$

Equivalent Constraints

Specially, the graph can either be the following two kinds

- a random graph $G\left(n, \frac{c^{2} d \log ^{2} n}{n}\right)$;
- any graph with conductance

$$
\Phi(G):=\min _{S \subseteq V: \sum_{v \in S} \operatorname{deg}(v) \leq|E|} \frac{E(S, \bar{S})}{\sum_{v \in S} \operatorname{deg}(v)}=\Omega(1)
$$

if we need $T(n)=O(\log n)$ (can be relaxed).

Algorithms

Construct each row of the testing matrix independently from a walk by letting each walked through vertices as 1 , others as 0 . The d-disjunct matrices with probability $1-o(1)$ for different problem variations are:

- (Fixed Testing Entrances) $m_{1} \times|V|$: each walk starts from a designated entry vertex, having t_{1} hops.
- (Fixed Testing Exit) $m_{4} \times|V|$: each walk starts from an arbitrary vertex, and ends at the designated exit vertex.
- (Fixed Testing Entrances and Exit) $m_{3} \times|V|$: each walk starts from a designated entry vertex, and ends at the designated exit vertex.
- (No constraints on Entrances and Exit)

Parameter	Value
D_{0}	$O\left(c^{2} d T^{2}(n)\right)$
m_{1}, m_{2}	$O\left(c^{4} d^{2} T^{2}(n) \log (n / d)\right)$
m_{3}	$O\left(c^{8} d^{3} T^{4}(n) \log (n / d)\right)$
m_{4}	$O\left(c^{9} d^{3} D T^{4}(n) \log (n / d)\right)$
t_{1}	$O\left(n /\left(c^{3} d T(n)\right)\right)$
t_{2}	$O\left(n D /\left(c^{3} d T(n)\right)\right)$

$m_{2} \times|V|$: each walk starts from an arbitrary vertex, having t_{2} hops.

Three probabilities

Definition

Consider a random walk $W:=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ of length t where all these vertices form a Markov chain. Define three probabilities related to W :
π_{v} the probability that W passes any single node v;
$\pi_{v, A}$ the probability that W of length t passes node v, but none of the vertices in A where $A \subseteq V$ and $v \notin A$.
$\pi_{v, A}^{u}$ the probability that W with sink (exit) u passes node v, but none of the vertices in A where $A \subseteq V$ and $v \notin A$.

Different Random Walks

Why we need (D, c)-uniform?

Lemma

Denote by μ the stationary distribution of G, then for each $v \in V, \mu(v) \in\left[\frac{1}{c n}, \frac{c}{n}\right]$.

Proof.

(D, c) - uniform $\Rightarrow D \leq \operatorname{deg}(v) \leq c D \Rightarrow n D \leq 2|E|=\operatorname{sum}_{v} \operatorname{deg}(v) \leq n c D$ property: a random walk on any graph that is not bipartite converges (finite number of steps) to a stationary distribution $\mu(v)=\frac{\operatorname{deg}(v)}{2|E|}$

Apparently, this is loose, so D, c-uniform can be relaxed for specific topology.

Why we need δ-mixing time

Lemma

$$
\pi=\Omega\left(\frac{t}{c n T(n)}\right)
$$

Proof.

Assume the random walk $W=\left\{w_{0}, w_{1}, \cdots, w_{t / T(n)}\right\}$ with $w_{i}=v_{i T(n)}$ (scale to $T(n)$), from the definition of δ-mixing time, where $\delta=\left(\frac{1}{2} c n\right)^{2}$, we can see

$$
\begin{aligned}
\operatorname{Pr}\left[w_{0} \neq v, w_{1} \neq v, \cdots, w_{t} \neq v\right] & \leq(1-1 / c n+\delta)^{t / T(n)} \\
& \leq(1-1 / 2 c n)^{2 t / T(n)} \\
& \leq \exp (-t /(c n T(n))) \\
& \leq 1-\Omega(t / c n(T(n)))
\end{aligned}
$$

If $\mu(v)$ can be tightened, δ can be enlarged, so that t could be smaller, so the matrix will have smaller row weight.

What do we need to lower bound $\pi_{v, A}$

Idea: we don't want the walk to enter the set A within t steps, so we can upper bound the probability of each vertices being passed for more than $k>1$ times and being passed within the first h steps. Can we get h larger enough than t so we can avoid passing the vertices in A ? Not that straightforward.

Lemma

There is a $k=O\left(c^{2} T(n)\right)$ such that for every $v \in V$, the probability that W passes v more than k times is at most $\pi_{v} / 4$

Lemma

For any walk W, if v is not a designated entrance vertex, then the probability that W visits v within the first h steps is at most h / D.

Mahdi Cheraghchi et al. presented by Ying Xuan
Graph-Constrained Group Testing

Motivation and Problem Definitions

Different Random Walks Notations
Lemmas

Lower Bounding $\pi_{\vee, A}$

Theorem

For the first algorithm (Fixed Testing entries) with D_{0} and t_{1} mentioned above. Let $v \in V$ and $A \subseteq V$ be a subset of at most d vertices in G such that $v \in A$ and $A \cap\{v\}$ does not include any of the designated vertices $s_{1}, s_{2}, \cdots s_{r}$, then

$$
\pi_{v, A}=\Omega\left(\frac{1}{c^{4} d T^{2}(n)}\right)
$$

Motivation and Problem Definitions

Different Random Walks Notations
Lemmas

Proof

Proof.

- $\mathcal{G}:=$ event that \underline{W} hits v no more than $k=O\left(c^{2} T(n)\right)$ times and never within the first $2 T(n)$ steps. $\Rightarrow \operatorname{Pr}[\mathcal{G}] \geq 1-2 T(n) / D-O(t / c n T(n))$;
- $\mathcal{B}:=$ event that \underline{W} hits some vertex in $A \Rightarrow \pi_{v, A} \geq \operatorname{Pr}[\neg \mathcal{B}, v \in W, \mathcal{G}]$;
- upperbound $\operatorname{Pr}[\mathcal{B} \mid v \in W, \mathcal{G}]$;
- lowerbound $\pi_{v, A}$.

upperbound $\operatorname{Pr}[\mathcal{B} \mid v \in W, \mathcal{G}]$

Proof.

- fix $i>2 T(n)$ and $v_{i}=v$, i.e. assume W visits v after $2 T(n)$ steps;
- divide the walk into four parts $W_{1}, W_{2}, W_{3}, W_{4}$ with intervals

$$
(0, T(n)),(T(n)+1, i-T(n)-1),(i-T(n), i+T(n)),(i+T(n)+1, t) ;
$$

- bound \mathcal{B} for each node in each interval, and get loose union bound for each i value as $\operatorname{Pr}\left[\mathcal{B} \mid v_{i}, \mathcal{G}\right] \leq 1.1\left(\frac{6 d T(n)}{D}+\frac{4 d c t}{n}\right)$
- since W hits v no more than k times, consider $t>2 T(n)$ events $v_{i}=v$ for $i=[2 T(n)+1, t]$, their intersection is empty. Since $v \in W$ is the union of these events, we have a union bound

$$
\operatorname{Pr}[\mathcal{B} \mid v \in W, \mathcal{G}]=O\left(c^{2} T(n)\left(\frac{6 d T(n)}{D}+\frac{4 d c t}{n}\right)\right)
$$

Motivation and Problem Definitions

Possible Usages and Relaxations

Main Theorem

Correctness of the first algorithm

The first algorithm returns a $O\left(c^{4} D^{2} T^{2}(n) \log (n / d)\right) \times n d$-disjunct matrix for $D>O\left(c^{d} T^{2}(n)\right)$ and $t=O\left(n /\left(c^{3} d T(n)\right)\right)$.

Proof

- $X_{i}:=$ the $i^{\text {th }}$ row has 1 at column v and all 0 at $|A|<d$ columns, so $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\pi_{v, A} ;$
- failure probability for all $v \in V$ and d-subset A is

$$
p_{f} \leq \sum_{v, A}\left(1-\pi_{v, A}\right)^{m} \leq \exp \left(d \log \frac{n}{d}\right)\left(1-\Omega\left(\frac{1}{c^{4} d T^{2}(n)}\right)\right)^{m}=o(1)
$$

Relaxations

- (D, c)-uniform;
- δ-mixing time;
- calculation of the failure probability;

Possible Usages

- study on specific topologies instead of arbitrary graph;
- divide the graph into multiple subgraphs that satisfy the graph constraint;

