Graph-Constrained Group Testing

Mahdi Cheraghchi et al. presented by Ying Xuan

May 20, 2010

Image: A math a math

Mahdi Cheraghchi et al. presented by Ying Xuan Graph-Constrained Group Testing

Table of contents

Motivation and Problem Definitions

2 Constraints on the Underlying Graph

- 3 Random Walk based Group Testing Solutions
 - Different Random Walks
 - Correctness Proof
 - Notations
 - Lemmas

Possible Usages and Relaxations

<ロ> <同> <同> <同> < 同>

- ∢ ⊒ →

Applications call for connected pools

- detection of congested links in IP networks or all-optical networks using probes.
- detection of dead nodes or links in sensor networks using testing packets.
- detection of infected individuals using human agents.

< ロト < 同ト < ヨト < ヨト

All need the testing pools to be walks by the probe/packet/agent.

Four Problem Variations for detecting defected vertices

Given a Undirected non-weighted graph G = (V, E) with |V| = nand at most $d \ll n$ defected vertices; find the *d*-disjunct matrix standing for the testing pools.

- (Fixed Testing Entrances) all the probes starting from *r* designated vertices (entry), no constraint on the exit;
- (Fixed Testing Exit) all the probes stops at a designated sink node (exit), no constraint on the entrance;
- Fixed Testing Entrances and Exit;
- No constraints on Entrances and Exit

Similar for detecting detected edges.

Necessary Constraints on the underlying graph

(D, c)-uniform

 $D \leq deg(v) \leq cD$ for special parameters D, c > 1 and $\forall v \in V$.

$(\frac{1}{2}cn)^2$ -mixing time

The smallest integer T(n) = t such that a random walk of length t starting at $\forall v \in V$ ends up having a distribution μ' with

$$\|\mu' - \mu\|_{\infty} = \max_{i \in \Omega} \|\mu(i) - \mu'(i)\| < (\frac{1}{2}cn)^2$$

(日) (部) (E) (E)

Equivalent Constraints

Specially, the graph can either be the following two kinds

- a random graph $G(n, \frac{c^2 d \log^2 n}{n});$
- any graph with conductance

$$\Phi(G) := \min_{S \subseteq V: \sum_{v \in S} deg(v) \le |E|} \frac{E(S, \overline{S})}{\sum_{v \in S} deg(v)} = \Omega(1)$$

・ロン ・回と ・ヨン・

æ

if we need $T(n) = O(\log n)$ (can be relaxed).

Different Random Walks Notations Lemmas

Algorithms

Construct each row of the testing matrix independently from a walk by letting each walked through vertices as 1, others as 0. The *d*-disjunct matrices with probability 1 - o(1) for different problem variations are:

- (Fixed Testing Entrances) m₁ × |V|: each walk starts from a designated entry vertex, having t₁ hops.
- (Fixed Testing Exit) m₄ × |V|: each walk starts from an arbitrary vertex, and ends at the designated exit vertex.
- (Fixed Testing Entrances and Exit) m₃ × |V|: each walk starts from a designated entry vertex, and ends at the designated exit vertex.
- (No constraints on Entrances and Exit)
 m₂ × |V|: each walk starts from an arbitrary vertex, having t₂ hops.

Mahdi Cheraghchi et al. presented by Ying Xuan

Parameter	Value
D_0	$O(c^2 dT^2(n))$
m_1, m_2	$O(c^4 d^2 T^2(n) \log(n/d))$
m_3	$O(c^8d^3T^4(n)\log(n/d))$
m_4	$O(c^9d^3DT^4(n)\log(n/d))$
t_1	$O(n/(c^3 dT(n)))$
t_2	$O(nD/(c^3dT(n)))$

・ロン ・回 と ・ ヨ と ・ ヨ と

Graph-Constrained Group Testing

Different Random Walks Notations Lemmas

・ロト ・回ト ・ヨト ・ヨト

Three probabilities

Definition

Consider a random walk $W := (v_0, v_1, ..., v_t)$ of length *t* where all these vertices form a Markov chain. Define three probabilities related to W:

- π_v the probability that W passes any single node v;
- $\pi_{v,A}$ the probability that W of length t passes node v, but none of the vertices in Awhere $A \subseteq V$ and $v \notin A$.
- $\pi_{v,A}^{u}$ the probability that W with sink (exit) u passes node v, but none of the vertices in A where $A \subseteq V$ and $v \notin A$.

Different Random Walks Notations Lemmas

ヘロン 人間と 人間と 人間と

Why we need (D, c)-uniform?

Lemma

Denote by μ the stationary distribution of G, then for each $v \in V$, $\mu(v) \in [\frac{1}{cn}, \frac{c}{n}]$.

Proof.

 $(D, c) - uniform \Rightarrow D \le deg(v) \le cD \Rightarrow nD \le 2|E| = sum_v deg(v) \le ncD$

property: a random walk on any graph that is not bipartite converges (finite number of steps) to a stationary distribution $\mu(v) = \frac{\deg(v)}{2|E|}$

Apparently, this is loose, so D, c-uniform can be relaxed for specific topology.

Different Random Walks Notations Lemmas

Why we need δ -mixing time

Lemma

$$\pi = \Omega(\frac{t}{cnT(n)})$$

Proof.

Assume the random walk $W = \{w_0, w_1, \dots, w_{t/T(n)}\}$ with $w_i = v_{iT(n)}$ (scale to T(n)), from the definition of δ -mixing time, where $\delta = (\frac{1}{2}cn)^2$, we can see

$$\begin{aligned} \Pr[w_0 \neq v, w_1 \neq v, \cdots, w_t \neq v] &\leq (1 - 1/cn + \delta)^{t/T(n)} \\ &\leq (1 - 1/2cn)^{2t/T(n)} \\ &\leq \exp(-t/(cnT(n))) \\ &\leq 1 - \Omega(t/cn(T(n))) \end{aligned}$$

If $\mu(\mathbf{v})$ can be tightened, δ can be enlarged, so that t could be smaller, so the matrix will have smaller row weight.

Different Random Walks Notations Lemmas

・ロン ・回 と ・ ヨ と ・ ヨ と

What do we need to lower bound $\pi_{\nu,A}$

Idea: we don't want the walk to enter the set A within t steps, so we can upper bound the probability of <u>each vertices being passed for more than k > 1 times</u> and being passed within the first h steps. Can we get h larger enough than t so we can avoid passing the vertices in A? Not that straightforward.

Lemma

There is a $k = O(c^2 T(n))$ such that for every $v \in V$, the probability that W passes v more than k times is at most $\pi_v/4$

Lemma

For any walk W, if v is not a designated entrance vertex, then the probability that W visits v within the first h steps is at most h/D.

Different Random Walks Notations Lemmas

イロト イヨト イヨト イヨト

Lower Bounding $\pi_{v,A}$

Theorem

For the first algorithm (Fixed Testing entries) with D_0 and t_1 mentioned above. Let $v \in V$ and $A \subseteq V$ be a subset of at most d vertices in G such that $v \in A$ and $A \cap \{v\}$ does not include any of the designated vertices s_1, s_2, \dots, s_r , then

$$\pi_{v,A} = \Omega(\frac{1}{c^4 dT^2(n)})$$

Different Random Walks Notations Lemmas

(日) (四) (三) (三) (三)

Proof

Proof.

- $\mathcal{G} := \text{event that } \underline{W \text{ hits } v \text{ no more than } k = O(c^2T(n)) \text{ times and never within } \underline{\text{the first } 2T(n) \text{ steps.}} \Rightarrow Pr[\mathcal{G}] \ge 1 2T(n)/D O(t/cnT(n));$
- B := event that <u>W</u> hits some vertex in A ⇒ π_{v,A} ≥ Pr[¬B, v ∈ W, G];
- upperbound $Pr[\mathcal{B}|v \in W, \mathcal{G}]$;
- lowerbound $\pi_{v,A}$.

Different Random Walks Notations Lemmas

upperbound $Pr[\mathcal{B}|v \in W, \mathcal{G}]$

Proof.

- fix i > 2T(n) and $v_i = v$, i.e. assume W visits v after 2T(n) steps;
- divide the walk into four parts W₁, W₂, W₃, W₄ with intervals
 (0, T(n)), (T(n) + 1, i T(n) 1), (i T(n), i + T(n)), (i + T(n) + 1, t);
- bound \mathcal{B} for each node in each interval, and get loose union bound for each ivalue as $Pr[\mathcal{B}|v_i, \mathcal{G}] \leq 1.1(\frac{6dT(n)}{D} + \frac{4dct}{n})$
- since W hits v no more than k times, consider t > 2T(n) events v_i = v for i = [2T(n) + 1, t], their intersection is empty. Since v ∈ W is the union of these events, we have a union bound

$$Pr[\mathcal{B}|v \in W, \mathcal{G}] = O(c^2 T(n)(\frac{6dT(n)}{D} + \frac{4dct}{n}))$$

2

Different Random Walks Notations Lemmas

・ロト ・回ト ・ヨト ・ヨト

æ

Main Theorem

Correctness of the first algorithm

The first algorithm returns a $O(c^4D^2T^2(n)\log(n/d)) \times n$ d-disjunct matrix for $D > O(c^dT^2(n))$ and $t = O(n/(c^3dT(n)))$.

Different Random Walks Notations Lemmas

・ロト ・回ト ・ヨト ・ヨト

2

Proof

- $X_i :=$ the *i*th row has 1 at column v and all 0 at |A| < d columns, so $E[X_i] = Pr[X_i = 1] = \pi_{v,A};$
- failure probability for all $v \in V$ and *d*-subset *A* is $p_f \leq \sum_{v,A} (1 - \pi_{v,A})^m \leq exp(d \log \frac{n}{d}) \left(1 - \Omega(\frac{1}{c^4 dT^2(n)})\right)^m = o(1)$

Relaxations

- (D, c)-uniform;
- δ-mixing time;
- calculation of the failure probability;

イロン イヨン イヨン イヨン

æ

Possible Usages

- study on specific topologies instead of arbitrary graph;
- divide the graph into multiple subgraphs that satisfy the graph constraint;

イロン イヨン イヨン イヨン

The End

Q & A

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Mahdi Cheraghchi et al. presented by Ying Xuan Graph-Constrained Group Testing