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Applications call for connected pools
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detection of congested links

in IP networks or all-optical

networks using probes.

detection of dead nodes or

links in sensor networks

using testing packets.

detection of infected

individuals using human

agents.
All need the testing pools to be walks by the probe/packet/agent.
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Four Problem Variations for detecting defected vertices

Given a Undirected non-weighted

graph G = (V , E) with |V | = n

and at most d ≪ n defected

vertices; find the d-disjunct matrix

standing for the testing pools.

!

!

!

!

! !

Agent 1

Agent 2

Agentm

(Fixed Testing Entrances) all the probes starting from r designated vertices

(entry), no constraint on the exit;

(Fixed Testing Exit) all the probes stops at a designated sink node (exit), no

constraint on the entrance;

Fixed Testing Entrances and Exit;

No constraints on Entrances and Exit

Similar for detecting detected edges.

Mahdi Cheraghchi et al. presented by Ying Xuan Graph-Constrained Group Testing



Motivation and Problem Definitions
Constraints on the Underlying Graph

Random Walk based Group Testing Solutions
Possible Usages and Relaxations

Necessary Constraints on the underlying graph

(D, c)-uniform

D ≤ deg(v) ≤ cD for special parameters D, c > 1 and ∀v ∈ V .

( 1
2
cn)2-mixing time

The smallest integer T (n) = t such that a random walk of length t starting at ∀v ∈ V

ends up having a distribution µ′ with

‖µ′ − µ‖∞ = max
i∈Ω

‖µ(i) − µ′(i)‖ < (
1

2
cn)2
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Equivalent Constraints

Specially, the graph can either be the following two kinds

a random graph G(n, c2d log2 n
n

);

any graph with conductance

Φ(G) := min
S⊆V :

∑

v∈S deg(v)≤|E |

E(S, S̄)
∑

v∈S deg(v)
= Ω(1)

if we need T (n) = O(log n) (can be relaxed).
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Algorithms

Construct each row of the testing matrix independently from a walk by letting each

walked through vertices as 1, others as 0. The d-disjunct matrices with probability

1 − o(1) for different problem variations are:

(Fixed Testing Entrances) m1 × |V |: each

walk starts from a designated entry vertex,

having t1 hops.

(Fixed Testing Exit) m4 × |V |: each walk

starts from an arbitrary vertex, and ends at

the designated exit vertex.

(Fixed Testing Entrances and Exit) m3 × |V |:

each walk starts from a designated entry

vertex, and ends at the designated exit vertex.

(No constraints on Entrances and Exit)

m2 × |V |: each walk starts from an arbitrary

vertex, having t2 hops.

Parameter Value

D0 O(c2dT 2(n))

m1,m2 O(c4d2T 2(n) log(n/d))

m3 O(c8d3T 4(n) log(n/d))

m4 O(c9d3DT 4(n) log(n/d))

t1 O(n/(c3dT (n)))

t2 O(nD/(c3dT (n)))
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Three probabilities

Definition

Consider a random walk W := (v0, v1, ..., vt) of length t where all these vertices form

a Markov chain. Define three probabilities related to W :

πv the probability that W passes any single node v ;

πv,A the probability that W of length t passes node v , but none of the vertices in A

where A ⊆ V and v /∈ A.

πu
v,A the probability that W with sink (exit) u passes node v , but none of the vertices

in A where A ⊆ V and v /∈ A.

Mahdi Cheraghchi et al. presented by Ying Xuan Graph-Constrained Group Testing



Motivation and Problem Definitions
Constraints on the Underlying Graph

Random Walk based Group Testing Solutions
Possible Usages and Relaxations

Different Random Walks
Notations
Lemmas

Why we need (D, c)-uniform?

Lemma

Denote by µ the stationary distribution of G, then for each v ∈ V , µ(v) ∈ [ 1
cn

, c
n
].

Proof.

(D, c) − uniform ⇒ D ≤ deg(v) ≤ cD ⇒ nD ≤ 2|E | = sumv deg(v) ≤ ncD

property: a random walk on any graph that is not bipartite converges (finite number

of steps) to a stationary distribution µ(v) = deg(v)
2|E |

Apparently, this is loose, so D, c-uniform can be relaxed for specific topology.
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Why we need δ-mixing time

Lemma

π = Ω(
t

cnT (n)
)

Proof.

Assume the random walk W = {w0,w1, · · · , wt/T (n)} with wi = viT (n) (scale to

T (n)), from the definition of δ-mixing time, where δ = ( 1
2
cn)2, we can see

Pr [w0 6= v ,w1 6= v , · · · ,wt 6= v ] ≤ (1 − 1/cn + δ)t/T (n)

≤ (1 − 1/2cn)2t/T (n)

≤ exp(−t/(cnT (n)))

≤ 1 − Ω(t/cn(T (n)))

If µ(v) can be tightened, δ can be enlarged, so that t could be smaller, so the matrix

will have smaller row weight.
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What do we need to lower bound πv ,A

Idea: we don‘t want the walk to enter the set A within t steps, so we can upper

bound the probability of each vertices being passed for more than k > 1 times and

being passed within the first h steps. Can we get h larger enough than t so we can

avoid passing the vertices in A? Not that straightforward.

Lemma

There is a k = O(c2T (n)) such that for every v ∈ V , the probability that W passes v

more than k times is at most πv/4

Lemma

For any walk W , if v is not a designated entrance vertex, then the probability that W

visits v within the first h steps is at most h/D.
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Lower Bounding πv ,A

Theorem

For the first algorithm (Fixed Testing entries) with D0 and t1 mentioned above. Let

v ∈ V and A ⊆ V be a subset of at most d vertices in G such that v ∈ A and A∩ {v}

does not include any of the designated vertices s1, s2, · · · sr , then

πv,A = Ω(
1

c4dT 2(n)
)
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Proof

Proof.

G := event that W hits v no more than k = O(c2T (n)) times and never within

the first 2T (n) steps. ⇒ Pr [G] ≥ 1 − 2T (n)/D − O(t/cnT (n));

B := event that W hits some vertex in A ⇒ πv,A ≥ Pr [¬B, v ∈ W ,G];

upperbound Pr [B|v ∈ W ,G];

lowerbound πv,A.
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upperbound Pr [B|v ∈ W ,G]

Proof.

fix i > 2T (n) and vi = v , i.e. assume W visits v after 2T (n) steps;

divide the walk into four parts W1,W2, W3,W4 with intervals

(0, T (n)), (T (n) + 1, i − T (n) − 1), (i − T (n), i + T (n)), (i + T (n) + 1, t);

bound B for each node in each interval, and get loose union bound for each i

value as Pr [B|vi ,G] ≤ 1.1(
6dT (n)

D
+ 4dct

n
)

since W hits v no more than k times, consider t > 2T (n) events vi = v for

i = [2T (n) + 1, t], their intersection is empty. Since v ∈ W is the union of these

events, we have a union bound

Pr [B|v ∈ W ,G] = O(c2T (n)(
6dT (n)

D
+

4dct

n
))
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Main Theorem

Correctness of the first algorithm

The first algorithm returns a O(c4D2T 2(n) log(n/d)) × n d-disjunct matrix for

D > O(cd T 2(n)) and t = O(n/(c3dT (n))).
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Proof

Xi := the i th row has 1 at column v and all 0 at |A| < d columns, so

E [Xi ] = Pr [Xi = 1] = πv,A;

failure probability for all v ∈ V and d-subset A is

pf ≤
∑

v,A(1 − πv,A)m ≤ exp(d log n
d
)
(

1 − Ω( 1
c4dT 2(n)

)
)m

= o(1)
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Relaxations

(D, c)-uniform;

δ-mixing time;

calculation of the failure probability;
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Possible Usages

study on specific topologies instead of arbitrary graph;

divide the graph into multiple subgraphs that satisfy the graph constraint;
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The End

Q & A
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